ley de ohm.
I = Intensidad en amperios (A)
V = Diferencia de potencial en
voltios (V)
R = Resistencia en ohmios (Ω).
La ley de Ohm dice que la intensidad que circula entre dos puntos de un circuito eléctrico es proporcional a la tensión eléctrica entre dichos puntos. Esta constante es la conductancia eléctrica, que es lo contrario a la resistencia eléctrica.
La intensidad de corriente que circula por un circuito dado, es directamente proporcional a la tensión aplicada e inversamente proporcional a la resistencia del mismo.
Ley de Ohm y la potencia eléctrica.
La potencia eléctrica es la relación de paso de energía de un flujo por unidad de tiempo; es decir, la cantidad de energía entregada o absorbida por un elemento en un tiempo determinado.
Normalmente se analiza la Ley de Ohm como una relación entre el voltaje, la corriente y el valor de un resistor
Una forma más completa de expresar la Ley de Ohm es incluyendo la fórmula de potencia eléctrica.
Si se utiliza la conocida fórmula de potencia (con unidad de watts o vatios): P = V x I, potencia = voltaje x corriente, y sus variantes: V = P / I e I = P / V, se obtienen ecuaciones adicionales.
Las nuevas ecuaciones permiten obtener los valores de potencia, voltaje, corriente y resistencia, con sólo dos de las cuatro variables.
Despejando para P (potencia en watts o vatios) se obtiene:
P = V2 / R, P = I2 x R, P = V x I
P = V2 / R, P = I2 x R, P = V x I
I = V / R, I = P / V, I = (P / R)1/2
Despejando para R (resistencia en ohmios) se obtiene:
R = V / I, R = V2 / P, R = P / I2
R = V / I, R = V2 / P, R = P / I2
Despejando para V (Voltaje en voltios) se obtiene:
V = (P x R)1/2, V = P / I, V = I x R
V = (P x R)1/2, V = P / I, V = I x R
leyes de kirchoff
Las dos primeras leyes establecidas por Gustav R. Kirchhoff (1824-1887) son indispensables para los cálculos de circuitos, estas leyes son:
1. La suma de las corrientes que entran, en un nudo o punto de unión de un circuito es igual a la suma de las corrientes que salen de ese nudo. Si asignamos el signo más (+) a las corrientes que entran en la unión, y el signo menos (-) a las que salen de ella, entonces la ley establece que la suma algebraica de las corrientes en un punto de unión es cero:
(suma algebraica de I) Σ I = 0 (en la unión)
2. Para todo conjunto de conductores que forman un circuito cerrado, se verifica que la suma de las caídas de tensión en las resistencias que constituyen la malla, es igual a la suma de las f.e.ms. intercaladas. Considerando un aumento de potencial como positivo (+) y una caída de potencial como negativo (-), la suma algebraica de las diferencias de potenciales (tensiones, voltajes) en una malla cerrada es cero: (suma algebraica de E) Σ E - Σ I*R = 0 (suma algebraica de las caídas I*R, en la malla cerrada)
Como consecuencia de esto en la práctica para aplicar esta ley, supondremos una dirección arbitraria para la corriente en cada rama. Así, en principio, el extremo de la resistencia, por donde penetra la corriente, es positivo con respecto al otro extremo. Si la solución para la corriente que se resuelva, hace que queden invertidas las polaridades, es porque la supuesta dirección de la corriente en esa rama, es la opuesta.
Por ejemplo:
Los Divisores de corriente.
La corriente que entra a un nodo sale dividida en dos partes, la corriente a través de una rama sale como se muestra debajo:Los Divisores de tensión.
Puede calcularse el voltaje en R1 usando la ecuación en el siguiente ejemplo:NORMAS DE SEGURIDAD EN UN LABORATORIO DE ELECTRICIDAD Y ELECTRÓNICA.
1. ALGUNAS NORMAS BÁSICAS DE SEGURIDAD.- Las normas básicas de seguridad son un conjunto de medidas destinadas a proteger la salud de todos, prevenir accidentes y promover el cuidado del material de los laboratorios. Son un conjunto de prácticas de sentido común: el elemento clave es la actitud responsable y la concientización de todos: personal y alumnado.
2. .- Tus áreas de trabajo deben tener equipos eléctricos debidamente protegidos, buena ventilación e iluminación. Tus componentes, herramientas, y los materiales deben de estar almacenados en áreas adecuadas.
3. .- los espacios de trabajo de tu laboratorio deben de estar limpios y descongestionados. Dentro de lo posible trata de no utilizar instalaciones provisionales, ya que pueden causar un accidente si se tratasen de conexiones eléctricas nunca efectuar una instalación provisional,si debe usarse más de dos veces
4. .- Al tratar con electricidad se debe de ser muy cuidadoso para evitar algún tipo de evento no deseado. Recuerda siempre aplicar las normas de seguridad. Un cuerpo mal aislado es un buen conductor de la electricidad. Siempre que sea necesario utiliza una base aislante sobre tu banco de trabajo y en el suelo.
5 .- La protección de los toma corrientes se hace a través de un elemento adicional para evitar descargas eléctricas llamado "Puesta a tierra", que suele ser una varilla de cobre enterrada en el suelo por la cual se deben desviar las descargas eléctricas no deseadas
6..- Evita los "cortocircuitos" (conexión incorrecta entre dos cables) entre la fuente de alimentación (fuente de voltaje) y el circuito a crear o reparar. Verifica que no hayan terminales o cables sueltos que puedan hacer un contacto accidental. Los fusibles cumplen la función de proteger los equipos, pero nosotros debemos cumplir la función de protegernos.
7.- Los circuitos eléctricos pueden producir descargas eléctricas, por lo tanto, no hay que trabajar con circuitos en funcionamiento, especialmente cuando hay altos voltajes, aún voltajes pequeños pueden darte una mala sorpresa bajo ciertas condiciones
8..- Anillos, relojes (debes de quitártelos), herramientas u objetos metálicos pueden entrar en contacto con los conductores que transportan electricidad, pudiendo producir daños a la persona o en el circuito. Lo más recomendable es alejarlos de las fuentes de corriente.
9. .- Se deberá conocer la ubicación de los elementos de seguridad en el lugar de trabajo, tales como: matafuegos, salidas de emergencia, accionamiento de alarmas, etc.
MATA FUEGOS.-
10. Observar de qué tipo –A, B o C- es cada matafuego, y verificar qué material combustible -papel, madera, pintura, material eléctrico- se puede apagar con él. Por ejemplo, nunca usar un matafuegos tipo A (sólo A) para apagar fuego provocado por un cortocircuito
Matafuegos Tipo A: sirven para fuego de materiales combustibles sólidos (madera, papel, tela, etc.)
Matafuegos Tipo B: para fuego de materiales combustibles líquidos (nafta, kerosene, etc.).
Matafuegos Tipo C: para fuegos en equipos eléctricos (artefactos, tableros, etc.).
11. .- No se deben bloquear las rutas de escape o pasillos con equipos, mesas, máquinas u otros elementos que entorpezcan la correcta circulación.
Es indispensable recalcar la prudencia y el cuidado con que se debe manipular todo aparato que funcione con corriente eléctrica.. Nunca debe tocar un artefacto eléctrico si usted está mojado o descalzo.
12. .- No se permitirán instalaciones eléctricas precarias o provisorias. Se dará aviso inmediato a la Secretaría Técnica en caso de filtraciones o goteras que puedan afectar las instalaciones o equipos y puedan provocar incendios por cortocircuitos
13. .- Es imprescindible mantener el orden y la limpieza. Cada persona es responsable directa del lugar donde está trabajando y de todos los lugares comunes. Todo material corrosivo, tóxico, inflamable, oxidante, radiactivo, explosivo o nocivo deberá estar adecuadamente etiquetado. El material de vidrio roto no se depositará con los residuos comunes. Será conveniente ubicaros en cajas resistentes, envuelto en papel y dentro de bolsas plásticas
14. QUE ES UN SISTEMA DE PUESTA A TIERRA?
Conjunto de elementos conductores de un sistema eléctrico especifico, sin interrupciones ni fusibles, que conectan los equipos eléctricos con el terreno o una masa metálica.Comprende la masa a tierra y la red potencial de cables que normalmente no conducen corriente.